Acta Cryst. (1964). 17, 1058

The Crystal Structure of bis-(*N*-phenylsalicylaldiminato)copper(II)

BY L. WEI, R. M. STOGSDILL AND E. C. LINGAFELTER

Department of Chemistry, University of Washington, Seattle 5, Washington, U.S.A.

(Received 30 August 1963)

The crystal structure of bis-(N-phenylsalicylaldiminato)copper(II), $[OC_6H_4CHNC_6H_5]_2Cu$, has been determined from three-dimensional X-ray diffraction data, hol through h5l. The cell has dimensions $a = 12 \cdot 15$, $b = 7 \cdot 96$, $c = 11 \cdot 94$ Å, $\beta = 111^{\circ} 44'$, space group $P2_1/n$, and contains two molecules.

The coordination of the copper(II) ion is planar with Cu-O = 1.88 Å and Cu-N = 1.99 Å. The molecule, although centrosymmetric, is markedly non-planar, the two salicylaldimine groups being parallel but not coplanar, with a separation of 0.89 Å. The phenyl groups are roughly perpendicular to the remainder of the molecule.

Introduction

The cell dimensions and space group of bis-(N-phenylsalicylaldiminato) copper (II), $[OC_6H_4CHNC_6H_5]_2Cu$, have been reported by von Stackelberg (1947) and a report on a preliminary study of the structure has been given by Block (1958). We have now completed a three-dimensional determination of the crystal structure from X-ray diffraction data.

Experimental

The Schiff base, N-phenylsalicylaldimine, was prepared by the reaction between aniline and salicylaldehyde in ethanol-water solution. To this solution was added the stoichiometric amount of copper(II) acetate and the mixture was refluxed for one hour. The product, separated as a dark brown powder, was recrystallized from ethanol, yielding rhombshaped monoclinic plates on $\{10\overline{1}\}$, bounded by $\{110\}$.

Cell dimensions were determined from rotation, zero-level Weissenberg, and precession photographs, with Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å). Calibration was made by superposition of diffraction patterns of NaCl ($\alpha = 5.6394$ Å) on the films used for measurement. The cell dimensions are:

$$a = 12.145, b = 7.956, c = 11.935$$
 Å (all ± 0.01 Å);
 $\beta = 111^{\circ} 44'.$

The cell contains two molecules. Density calculated is 1.412 g.cm⁻³, observed 1.396 g.cm⁻³. Systematic absence of h0l for h+l odd and of 0k0 for k odd indicate the space group to be $P2_1/n$. With appropriate changes of axes, these results agree satisfactorily with those reported by earlier investigators.

Intensities were obtained from a set of integrated equi-inclination Weissenberg photographs, h0l through h5l, with Cu $K\alpha$ radiation. Camera integration was carried out in one direction only, normal to the rotation axis. Diffraction spots were then scanned normal to the integration direction with a Moll type densitometer feeding into a Leeds & Northrup amplifier and recorder having a logarithmic slide wire. The areas under the densitometer tracings were measured with a planimeter and used as relative intensities. The range of intensities, 1 to 10,000 was obtained by the use of multiple films and a range of exposure times. The intensities from the several films for a given level were placed on the same scale by comparison of common spots. The several levels were then placed on a common scale by the use of intensities from an integrated hk0 Weissenberg photograph.

Of the 2451 reflections within the limiting sphere, 1682 (68.4%) were examined and intensities measured for 1475. 207 reflections were found to be too weak for measurement.

Lorentz and polarization factors were applied and observed structure factors calculated by data reduction programs for the IBM 709 computer written in this Laboratory. No correction was made for absorption.

The atomic scattering factors used were those of Viervoll & Øgrim (1949) for copper, Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for nitrogen and carbon, and McWeeny (1951) for oxygen and hydrogen. No correction was made for anomalous dispersion.

Structure determination

The presence of two copper atoms in a cell of space group $P2_1/n$ requires that they be in a twofold set of special positions. They were therefore placed at 0, 0, 0 and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ and an electron-density projection on (010) was calculated with all *hol* phases equal to zero. All of the atoms appeared clearly, although not completely resolved, on this projection and their x and z parameters were refined by a series of twodimensional difference syntheses to $R_{h0l} = 11.5\%$. R is defined throughout as $\Sigma ||F_o| - |F_c||/\Sigma |F_o|$, where the summation is over the unique, observed reflections only. Consideration of the projected bond lengths made possible the estimation of approximate y coordinates. With these coordinates and an overall isotropic temperature factor, a series of four three-dimensional Fourier syntheses and two difference syntheses reduced R to 14.9%.

The refinement was continued with the Busing & Levy (1959) full matrix least-squares program. A modified Hughes weighing scheme was used, with Vw=0 for unobserved reflections for which $F_c \leq F_{\min}$, Vw=1 for unobserved reflections for which $F_c > F_{\min}$ and for observed reflections with $F_o \leq 8$, and $Vw=8/F_o$ for reflections with $F_o > 8$. The function minimized was $\Sigma w(|F_o| - |F_c|)^2$. Individual atom anisotropic

Table 1. Atomic coordinates and their e.s.d.'s

			$(\times 10^{*})$			
Atom	x/a	σ_x	y/b	σ_y	z/c	σ_z
Cu	0000	0	0000	0	0000	0
0	-0036	3	-0256	4	1550	3
Ν	1008	3	-2042	5	0211	3
C(1)	0248	5	-3703	8	-1628	5
C(2)	0384	7	-4377	10	-2656	6
C(3)	1368	7	-4139	10	-2871	6
C(4)	2268	7	-3268	10	-2071	6
C(5)	2183	5	-2547	8	-1010	5
C(6)	1170	4	-2775	6	-0819	3
C(7)	1607	4	-2706	6	1257	3
C(8)	1531	4	-1478	7	4662	3
C(9)	2338	4	-2630	8	4576	4
C(10)	2351	4	-2985	8	3457	4
C(11)	1558	3	-2204	6	2393	3
C(12)	0735	3	-1032	6	2482	3
C(13)	0722	4	-0689	7	3646	3
H(1)	-0542		-3901		-1472	
H(2)	-0292		-5147		-3247	
H(3)	1449		-4571		-3677	
H(4)	3080		-3133		-2204	
H(5)	2889		-1832		-0398	
H(7)	2190		-3700		-1284	
H(8)	1513		-1189		5517	
H(9)	2927		-3239		5350	
H(10)	2976		-3847		3382	
H(13)	0103		0159		3744	

temperature factors were used. Two cycles of refinement reduced R to 8.0%. At this point the hydrogen atoms were introduced in calculated positions and 20 reflections (marked E in Table 3) were omitted from subsequent calculations because of secondary extinction effects. Three cycles of least-squares refinement followed by adjustment of scale factor reduced R to the final value of 5.8%. During the last cycle no parameter shifted by more than 0.1σ .

The final parameters and their estimated standard deviations are given in Tables 1 and 2. Final values of observed and calculated structure factors are given in Table 3.

Discussion

The presence of only two molecules in the cell of space group $P2_1/n$ requires that the molecule be centrosymmetric. Intramolecular distances and angles are

Fig. 1. Bond lengths and angles.

Table	2 .	Thermal	parameters	and	their	e.s.d.	s
			$(All \times 10^4)$				

\mathbf{Atom}	β_{11}	eta_{22}	eta_{33}	β_{12}	β_{13}	eta_{23}
Cu	66(1)	120(3)	57(1)	13(1)	22(1)	3(1)
0	71(2)	118(10)	43(2)	53(3)	28(2)	20(3)
N	70(2)	101(9)	53(2)	13(3)	27(2)	5(3)
C(1)	138(5)	165(17)	95(4)	-14(6)	62(4)	-42(6)
C(2)	244(10)	174(16)	108(6)	-16(10)	95(6)	-50(7)
C(3)	223(9)	187(18)	115(6)	11(10)	117(7)	-16(8)
C(4)	203(8)	227(17)	145(7)	77(10)	137(7)	63(9)
C(5)	115(5)	213(15)	107(4)	28(6)	74(4)	30(6)
C(6)	105(4)	61(11)	72(3)	32(4)	47(3)	15(4)
C(7)	80(3)	114(12)	71(3)	34(4)	36(3)	21(4)
C(8)	111(4)	162(13)	50(3)	8(5)	31(3)	12(4)
C(9)	94(4)	231(15)	61(3)	29(6)	21(3)	38(5)
C(10)	93(4)	213(15)	74(3)	48(5)	33(3)	39(5)
C(11)	62(3)	132(11)	57(3)	11(4)	25(2)	14(4)
C(12)	64(3)	112(12)	49(2)	1(4)	21(2)	7(4)
C(13)	92(4)	133(12)	59(3)	16(5)	33(3)	3(4)

All hydrogen atoms were given isotropic B = 3.50 Å²

Table 3. Observed and calculated structure factors

The columns are h, $10F_o$ and $10F_c$. Unobserved reflections are marked with *. Reflections omitted because of secondary extinction effects are marked with E

- 1	15.C.L	14	115 126	2	14• -5 70 75	12	125 125	;	7C -6		11,1,1	٠	172 181		C,2,L		5,2,L		-8,3,L	
3575	32 31 97 95 33 30 28 37	3	-1,C,L 495 487 385 367	7 8 9	14• -17 65 61 62 -60	1 2	-6,1,L 4C1 414 354 4C4	9 1C 11 12	31C 322 1C2 1C0 77 82 F1C 110	C 1 2	174 192 6C 57 58 5C	2678	344 357 221 221 276 266	1 2 3	652E 5C2 1C5 -71 274 -263	C 1 2	105 -113 225 247 123 115	1 2 3	200 20 34 3 122 13	26 35 32
-1	4.C.L	7 9 11	595 581 473 466 202 193	1	-14.1.L	3	22 6 43 39 276 283	ij	47 49 2,1,L	4	33 25 57 57 12,1,1	9 10 11 12	18C -179 153 145 76 69 126 124	4 5 6 7	27C 215 235 2C5 425 424 25• -2	3 4 5 6	46 4C 25+ 17 1CC 58 25+ -5	4 5 6 7	34 -2 223 23 54 -5 141 13	29 34 53 35
6 8 10	41 36 71 76 51 52		0.0.1	34	47 46 27 -32 55 56	7 8 5	246 233 58 -56 225 240	C 1 2	83CE 135 14 20 318 28	C 1	57 -65 1C6 1C8	13 14	31 -27 52 55	8 5 10	215 226 146 145 117 110	7	£7 £5 1C,2,L	8 9 10	125 11 e7 7 56 -5	10
-1 1	13.C.L 55 55	4 8 10	475 448 4C4 39C 436 439 45 -45	£ 7 £ 5	1E+ -7 74 73 44 -4E 56 52	1C 11 12 13	4C 47 6C 55 65 -78 157 161	3 4 5 6	45C 473 238 210 275 270 . 33 40	3	47 42 13.1.L	1	213 224 23• 6	12	126 126 34 35	C 1 2	2C6 2C5 3C• C 2S• -17	12	26 -3 102 10	14
3 1 7 1	73 75 114 126 73 72	12 14	112 123 29 36	10	140 -2 72 74	14	174 -16 C 73		269 249 165 156 77 70	C 1 2	115 123 69 7C 4C 37	3 4 5 6	226 233 27 -12 231 232 98 -94	ç	1+2+L 184 -178 3328 372	3456	28+ 19 58 51 28 -27 76 74	1	-7.3.L 155 -14 254 -77	14
11 i -1	117 128 12,0,1	1	476E 782 112 137	1	\$1 56 65 65	1 2	SC 77 465 445	11	95 102 18• 12 67 65		14,1,L 43 47	7 8 5	442 452 1C2 1C3 211 211	234	344 348 254 275 156 134		11,2,1	3 4 5	37 3 202 21 17•	11
2 4 1	91 92 158 148 200 196	7 5 11	362 318 293 27C 142 -143 182 178	3 4 5 6	2C+ -5 55 ES 21+ -5 5C 55	3456	14• 1 135 162 17C -149 555 521	c	3,1,L 562E 610	ì	52 5C	11 12 13	21C 2C9 28 -6 1C2 1C5	2	52 -44 384 352 116 118	1 2 3	38 38 27 29 28 34	с 7 8 9	259 24 234 22 35 -3	15
4 2 1C 12 1	237 246 49 35 109 125	13	115 119 2.C.L	7 8 9 10	5C -53 131 128 64 71 179 24	7 8 9	52 55 178 185 62 -54 165 177	1 2 3	76 70 415 440 230 151	2 3 4	13+ -2 57 54 17+ -15	1	-6,2,L 35 47	10 11 12	155 215 1C2 -SE 123 127 25• -1	***	23• -8 65 -8 41 41	1C 11 12 13	165 15 11C -1C 192 2C 16*	;7 ;9 ;3 5
	11,C,L 35 41	C 2 4	376 4C8 271 26C 487 476	11 12	45 -44 101 56	11	134 -148 167 172 200 -3	5 6 7	18+ 284 26 21+ -	5 6 7	49 52 16• 25 67 77	2345	437 484 81 -79 230 263 65 55	13	87 78 2,2,L	ç	12,2,1 66 88 16 12	14	83 8 -6,3,L	<u>}6</u>
5 1	97 201 1C4 303 41 -44	10 12	32C 311 32* 11 147 151	1 2	£3 £3 22• -E		-4,1,1	10	175 -172 12C 120 15• -2	1	-14.2.L 33 28 62 59	6785	43C 483 162 15C 1C4 112 259 18	1	1046E 1486 153 18C 225 226 76 63	2	66 87 21+ 5	1 2 3	417 46 18 -1 281 28	11
ii -1	72 85	i	3.C.L 385 42C	4 5 6	22• 11 110 105 64 -65	3	4(E -365 266 293 57 52	12	4,1,L	34	34 -26 59 59 23• 17	1C 11 12	231 244 42 -26 183 179	4 5 6 7	79 55 28 -22 251 242	C 1	23• -11 51 108	5 6 7	374 39 62 5 410 40	33
2 1	26 123 20 120 148 241	3575	4C1 368 4CC 381 56 -75	2 5 10	151 15C 21• -15 4C 45 15• -23	5 é 7 E	247 274 203 -172 274 309 74 -68	C 1 2 3	192 -169 320 323 264 -242 265 271	7 8 9	22• -17 84 86 31 24	14 15	119 118 54 40	8 5 10	3C2 295 1C2 1C4 115 112	c	14,2,L 75 87	9 1C 11	23 -3 131 13 6P 6 81 7	13
10 2 12 1 14	131 124 2C4 216 147 151 45 54	11	56 47 4,C,L	11 12 12	87 89 37 -29 107 115	, 10 , 11 , 12	2C4 219 55 -52 74 61 66 -74	4 5 6 7	165 154 237 225 35 -13 285 292	1	-13,2,L 17 73	1	-3,2,L 655E 773 221 225	12	3.2.L		-14,3,1 63 70	12	65 -6 125 13	1
-	9,0,L	C 2 4	533 548 296 3C1 1C9 -87 23C 226	1	-11,1,L 58 -51 126 135	13 14 15	138 146 22 -25 23 33	8 5 10	6C -58 3S 30 4E -46	3	264 -25 73 65 45 -47 106 104	3456	245 273 122 -123 326 379 76 71	C 1 2	355 351 6176 661 124 115	2345	13• -2 E1 E2 14• 12 E3 55	1 2 3	253 -23 116 11 51 4	15
3 2 5 2 7 2 5 1	46 258 50 244 63 201	8 10 12	7C 55 4E 5C 27 4C	345	41 -21 131 126 22• 16	1	-3,1,1 545 -549		5,1,L	6 7 8 5	27• 23 1C2 1C4 25• -12 40 -29	2 9 1C	241 245 4C -33 115 119 68 -65	3 4 5 6	34 5 32 13 267 217	678	14• 18 £4 E2 41 4C	4 5 6 7	363 34 93 -8 394 39	12
11 1	96 199 11 113	ļ	5,C,L 385 365	7 8 9	42 -31 18C 116 22• 13	4 5	256 -251 288 233 141 -131	1 2 3	153 -136 3C5 3C3 157 131	10	42 -44 60 66	11 12 -13	184 184 32 -42 125 142	7 8	216 215 134 130 152 153		-12,3,L	8 5 10	147 13 33 -2 67 6	17
2 4 4	90 468 24 139	575	205 200 205 193 117 105	11 12 13	2C• 21 55 57 15• 14	6 7 8 9	211 -106 267 287 SC -1CC	5 6 7	175 177 31 26 196 175 25 -31	1 2	28• 15 95 89	15	25 33 -4,2,L	iì	123 13C 4.2.L	3	17• 5 41 32 17• 13	12 13 14	118 12 17 1 78 6	2
8 1 10 2 12	94 -183 19 231 50 45		51 E7 6,C,L	14	SG 86 -10,1,L	10 11 12 13	116 118 22• -3 166 172 50 -53	е 5 1С	76 71 34 -33 96 94	4 5 6	55 42 29• LS 78 68	1 2 3	67 -77 243 259 252 -265	C 1 2	557 587 18• S 4CC 423	6785	170 27 51 46 4C 26	ı	-4,3,L 333 35	59
-	73 EE 7,6,L	2 4 6	263 315 351 326 93 53 18C 174	1 2 3 4	165 167 5C -5C 152 157 75 75	14	150 152 47 57 -2,1,1 ²	C 1	6,1,1 16• -16 271 278	8 5 10	280 -12 210 26 270 22 78 76	5 6 7	253 287 217 -251 263 293 65 60	3 4 5 6	1CE 56 321 318 81 -76 223 215		55 6C -12,3,L	2345	422 42 68 8 118 11 510 54	16 13 17
1 3 3 5 1 7 2	55 345 65 79 88 205 72 296	۴ 10	153 15C 1C4 1C2 7,C,L	5 6 7 8	157 188 74 66 261 275 262 255	1 2 3	722E 11C8 256 263 218 243	2345	25 85 148 138 118 -108 185 176	12	230 -4 72 73 65 71	5 10 11	228 239 1C8 -111 1C5 1C6 3C• -27	7 9 10	65 -56 247 251 250 -15 103 57	1234	25 25 15• -16 43 4C 15• -6	6 7 8 5	115 10 265 26 31 -2 188 19	16
5 1 11 1 13 1 15	16 -105 13 111 43 150 64 61	1 3 5	32C 329 46 54 114 121	9 1C 11 12	22• -3 59 -51 143 142 37 41	4 5 6 7	53 -75 634E 659 310 324 225 226	678	54 -47 158 157 210 -27	• 1	-11,2,L 143 151 47 -45	12 13 14	155 157 26* 14 85 91	c	5,2,L 144 -121	5 6 7 E	143 144 46 45 106 58 72 65	1C 11 12 13	200 21 155 16 15• -1 101 10	8
- 2 1	€,C,L C6 -67	7	242 241 88 87 8+C+L	13	62 65 -5+1+L	8 5 10	1C3 -1C3 255 236 7E 85		7,1,L	3456	1C7 96 4C 38 128 128 30* -6	1	-3,2,L 576E 72C 205 224	1 2 3 4	3EC 3E4 56 45 315 317 125 -125	\$ 10 11	5C 35 46 -36 63 82	14	31 3 -3,3,6	3
4 3 6 3 8 1	83 371 14 334 65 172	C	387 363 155 164	1 2 3	54 -42 226 23C E7 E1	12 13 14	21+ 18 12C 123 5C 47	1 2 3	3C -31 208 206 112 -111	7 8 5	33 27 51 45 123 116 36 -37	3 4 5 6	252 254 153 -151 122 146	5 C 7	263 26C 1C8 -1C2 285 263	1	-11,3,L	1 2 3	481 52 352 4C 1C2 -1C	6 9 5
12 1	C3 1C7 9C 9C	ė	218 2C6 65 74	5 6 7	32 31 2C6 197 2C7 196	1	-1,1,L 64 -54	567	1/2 1/1 31 -19 195 151 21• -21	11 12 13	100 96 56 44 112 112	7 8 9	34C 355 26* 11 252 276	\$ 10 11	36 31 240 -1 45 47	3	2C+ 1C 41 55 2C+ 3	5 6 7	55 5 445 46 21 1	2
1 2	82 319 18 -97	1	256 3C3 114 125	9 10 11	60 60 14 72 44 -21	- 4	517E E27 . 185 166 231 246 368 275	8 9 10	71 66 164 -19 6C 65	1	-10,2,L	11	44 29 28• 22 105 104	ę	6,2,L 424 435	7 8 5	2C+ -14 53 86 15+ 22	9 10 11	111 11 35 4 7C -e	1
7 4 5.1	70 448 77 175 73 63	ì	109 97 72 76 10,0,L	13	133 126 18• -18 7C 7C	6 7 8 5	464 467 56 56 325 335 34 34	c i	8,1,L 54 -54 266 266	3	33 35 125 137 29• -15	.19	-2+2+L	234	312 326 72 62 179 170	11	16• 20 62 67	13	164 -1 20 1	0.7
13 1	72 74 19 1CE 4.C.L	C 2	126 122 228 239 89 P6	1	-E,1,L 3C5 3CE	10	22* 17 32 -31 122 125	2 3 4	142 -138 97 97 22 -24	6 7 8 5	182 171 3C* -8 114 114 29* -18	1 2 3	490E 582 17C 227 61 63 247 268	5 6 7 8	61 -6C 217 216 44 3C 35 27	1	-10,3,L 115 111 54 61	1	-2,3,L	17
2 1	61 16 76 2C2	é	1či 113 11,c,1	3	68 55 77 -60 274 274	iš	66 83 C,1,L	6 7 8	35 -39 1C4 1C8 17* 11	1C 11 12	60 52 33 31 78 76 27 31	567	356 -35C 437 456 85 84	10	31 -22 24 37	345	41 34 2C+ -17 133 148	3 4 5	1C6 11 213 -21 88 1C	903
10 10 12 20	37 146 C7 111 25 25C	1 3 5	298 256 55 54 106 108	7 8 5	32C 33C 21+ -34 135 151	1 2 3	42C 472 556 -582 317 32C	,	9,1,L	14	70 68 -5,2,L	9 1C 11	35 46 8C -75 1C7 -113	C 1	42 -47 316 318	1	105 102 200 -4 134 128	1	28C 27 78 -8 2C -1	9 2 0
	3,C,L	ç	12.G.L 172 183	11	76 66 40 28 131 134	567	141 -136 551 558 31 -27 243 241	C 1 2 3	167 171 141 -136 152 146 35 -36	1 2 3	100 94 30 26 75 78	13 14	25• -14 €3 73	345	136 134 42 -42 145 136	11 12 13	62 64 23 21 147 155	11 12 13	115 10 18	943
3 24 5 71 7 31	4 274 20E 786 17 334	4	45 46 13,C,L	15	εε ες -7,1,L	۶ ۱۲ ۱۱	10 -71 162 103 121 114 128 131	4567	55 1C4 4C -40 138 127 45 53	567	216 212 74 65 336 336	23	25C -238 454 45C	7 £ 5	73 70 25• -23 35 35	1	-5,3,L 28 25	1	-1,3,L 185 2C	•
11 22	10 91 26 236 34 143	1	25 38 14,C,L	1 2 3	73 78 319 326 186 166	12	2C* -1 136 14C 1,1,L	8	54 52 10,1,L	9 10 11	115 1C6 30• -10 29• 11 35 24	4567	220 -195 301 304 22+ -10 255 253	ç	8,2,L 135 134	2345	4C 3C 2C5 2C1 15= -3	2 3 4 5	72 9 29 2 65 7 140 -13	24 7 3
	2,0,L 25 -57 71 91	¢.	85 56 -15,1,L	4 5 6 7	18C 183 33 32 319 326 198 -115	C 1 2	561E 763 174 177 566 653	C 1 2	22* 35 205 222 53 42 51 89	12 13 14	27 3C 136 142 37 4C	8 5 10 11	26• 1 136 -139 3C• -21 125 137	1234	118 -125 206 215 250 2 108 103	67 25 5	175 171 212 -2C8 138 120 2C+ -2	6 7 8 9	374 37 1C5 -10 159 16 118 11	C 1 6 9
6 63 1 20 10 20	13 438 16 284 13 217 18 223	234	25 23 134 -1 38 36	8 5 10	141 128 47 37 88 89 140 145	4 5 4	174 -161 257 256 15* -19	4 5 6 7	212 9C 96 4C 39	1	-8,2,L 58 59 32 32	12 13 14	27• 3 16C 97 83 78	5 6 7 8	25 -35 1C6 1C4 25• 2 5C 53	1C 11 12 13	111 11C 154 -23 157 151 25 32	1C 11 12	155 15 52 -4 137 14	1.9
						•	,,	•	01	3	105 90					14	54 57			

.

Table 3 (cont.)

shown in Fig. 1 and listed with their estimated standard deviations in Table 4. The molecule may be described in terms of a set of five planar groups: the coordination group CuN_2O_2 ; the two salicylaldimine groups, parallel but not coplanar; and the two phenyl groups. The equations for the leastsquares planes through these groups are given in Table 5, based on a set of Cartesian axes lying along a, b and c^* .

The coordination of the copper(II) ion is planar, the more common distorted octahedral coordination being prevented by the bulky phenyl groups. The Cu-O and Cu-N distances of 1.88 and 1.99 Å, respectively, agree well with the corresponding distances of 1.90 and 1.99 Å found in bis-(N-methylsalicylaldiminato)copper(II) (Lingafelter, Simmons, Morosin,

AC 17 - 69

Scheringer & Freiburg, 1961). The intrachelate angles in the N-phenyl and N-methyl compounds, 91.4° and 91.1° , are also in agreement.

The benzene ring and the oxygen atom in the salicylaldimine group are strictly coplanar (maximum distance of any atom from the least-squares plane, 0.012 Å), but the external carbon atom, C(7), and the nitrogen atom are slightly but significantly out of the plane. The two salicylaldimine groups are, of course, parallel as required by the centrosymmetry, but are far from coplanar. The perpendicular distance between the two parallel salicylaldimine planes is 0.89 Å, considerably larger than has been reported for any other similar molecule. Each salicylaldimine group makes an angle of 18° with the coordination plane.

Table 4. Bond distances and angles and their e.s.d.'s

Bond	(Å)	(Å)	Angle	(°)	(°)
Cu–O	1.878 (0.003)	O-Cu-N	91.4	(0.2)
Cu-N	1.993 (0.004)	Cu-O-C(12)	128.0	(0.4)
O - C(12)	1.313 (0.004)	Cu-N-C(7)	123.4	(0.3)
N-C(7)	1.302 (0.005)	Cu-N-C(6)	119.6	(0.3)
N-C(6)	1.438 (0.006)	C(6) - N - C(7)	116.8	(0.5)
C(1) - C(2)	1.404 (0.010)	N-C(6)-C(1)	118.6	(0.6)
C(2) - C(3)	1.326 (0.014)	N-C(6)-C(5)	120.9	(0.6)
C(3) - C(4)	1.347 (0.010)	C(6)-C(1)-C(2)	119.0	(0.8)
C(4) - C(5)	1.429 (0.010)	C(1)-C(2)-C(3)	121.4	(1.0)
C(5) - C(6)	1.343 (0.008)	C(2)-C(3)-C(4)	119.3	(1.0)
C(6) - C(1)	1.389 (0.007)	C(3)-C(4)-C(5)	121.9	(1.0)
C(7) - C(11)	1.436 (0.006)	C(4)-C(5)-C(6)	117.9	(0.8)
C(8) - C(9)	1.373 (0.008)	N-C(7)-C(11)	126.1	(0.5)
C(9) - C(10)	1.371 (0.007)	C(7)-C(11)-C(10)	118.1	(0.5)
C(10)-C(11)	1.421 (0.005)	C(7)-C(11)-C(12)	122.5	(0.5)
C(11)-C(12)	1.399 (0.006)	C(10)-C(11)-C(12)	119.4	(0.5)
C(12)-C(13)	1.422 (0.006)	O-C(12)-C(11)	123.7	(0.5)
C(13) - C(8)	1.396 (0.006)	O-C(12)-C(13)	118.3	(0.5)
C(1)–O′	3.164				
C(5)–O'	3.308		C(11)-C(12)-C(13)	118.0	(0.5)
C(2)-C(13')	3.261		C(8)-C(13)-C(12)	120.3	(0.5)
C(3)-C(13')	3.619		C(9)-C(8)-C(13)	121.9	(0.6)
C(4)-C(13')	3.984		C(8)-C(9)-C(10)	118.5	(0.6)
			C(9) - C(10) - C(11)	122.1	(0.6)

Table 5. Equations for least-squares planes

Coordination	-0.0823x - 0.0634y - 0.0424z =	0
Salicylaldimine No. 1	-0.0871x - 0.0954y - 0.0140z =	0.0581
Salicylaldimine No. 2	-0.0871x - 0.0954y - 0.0140z = -	-0.0581
Phenyl No. 1	-0.0481x + 0.1976y - 0.1188z = -	- 0.4158
Phenyl No. 2	-0.0481x + 0.1976y - 0.1188z =	0.4158

The bond distances and angles within the salicylaldimine group appear to be normal.

The phenyl group shows no significant deviation from planarity (maximum distance of any atom from the least-squares plane, 0.010 Å). The several bond distances and angles in the phenyl group appear to be significantly different, but we are unable to suggest any interpretation of the differences.

The phenyl groups are roughly perpendicular to the remainder of the molecule, making an angle of $82\cdot3^{\circ}$ with the coordination group and $64\cdot9^{\circ}$ with the salicylaldimine group.

The shortest intermolecular contact distance of each atom is given in Table 6.

Dobler (1962) has recently reported the cell dimensions and space group of the corresponding nickel(II) compound. After making the appropriate transforma-

 Table 6. Shortest intermolecular distances

Atom	Distance	Neighbor
C(1)	3·77 Å	C(7) at $-x, -1-y, -z$
C(2)	3.69	C(11) at $-x, -1-y, -z$
C(3)	3.69	C(4) at $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $-\frac{1}{2} - z$
	3.69	C(8) at $x, y, -1+z$
C(4)	3.69	C(3) at $\frac{1}{2} - x$, $\frac{1}{2} + y$, $-\frac{1}{2} - z$
C(5)	3.33	C(13) at $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$
C(6)	3.90	C(13) at $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$
C(7)	3.45	C(13) at $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$
C(8)	3 ⋅60	C(5) at $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$
C(9)	3 ⋅60	0 at $\frac{1}{2} + x$, $-\frac{1}{2} - y$, $\frac{1}{2} + z$
C(10)	3.45	Cu at $\frac{1}{2} + x$, $-\frac{1}{2} - y$, $\frac{1}{2} + z$
C(11)	3.69	C(2) at $-x, -1-y, -z$
C(12)	3.80	C(10) at $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$
C(13)	3.33	C(5) at $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$
Ň	3.82	C(10) at $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$
0	3.60	C(9) at $-\frac{1}{2}+x$, $-\frac{1}{2}-y$, $-\frac{1}{2}+z$
Cu	3.45	C(10) at $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$

tion of axes, a comparison of the two cells:

Cu:
$$a = 12 \cdot 15, b = 7 \cdot 96, c = 11 \cdot 94 \text{ Å},$$

 $\beta = 111^{\circ} 44', V = 1073 \text{ Å}^3,$
Ni: $a = 12 \cdot 64, b = 7 \cdot 63, c = 11 \cdot 81 \text{ Å}.$

N1:
$$a = 12.64, b = 7.63, c = 11.81 \text{ A},$$

 $\beta = 112^{\circ} 13', V = 1054 \text{ Å}^3,$

indicates that the two molecules are nearly, but not completely, identical in structure.

This investigation was supported in part by the U.S. Public Health Service under Research Grant GM 10842.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- BLOCK, B. P. (1958). Amer. Chem. Soc. Abstracts of Papers, 134th Meeting, p. 35S.
- BUSING, W. R. & LEVY, H. A. (1959). A Crystallographic Least Squares Refinement Program for the IBM 704. ORNL Central Files No. 59-4-37. Chem. Div. ORNL, Oak Ridge, Tennessee.
- DOBLER, M. (1962). Helv. Chim. Acta 45, 1628.
- LINGAFELTER, E. C., SIMMONS, G. L., MOROSIN, B., SCHERINGER, C. & FREIBURG, C. (1961). Acta Cryst. 14, 1222.
- MCWEENY, R. (1951). Acta Cryst. 4, 513.
- STACKELBERG, M. v. (1947). Z. anorg. Chem. 253, 136.
- VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 277.